Retiring the multilib project

I created the Multilib project back in November 2013 (though the effort itself started roughly a year earlier) with the goal of maintaining the multilib eclasses and porting Gentoo packages to them. Back in the day, we were even requested to co-maintain a few packages whose maintainers were opposed to multilib ports. In June 2015, last of the emul-linux-x86 packages were removed and our work has concluded.

The project continued to exist for the purpose of maintaining the eclasses and providing advice. Today, I can say that the project has served its purpose and it is time to retire it. Most of the team members have already left, the multilib knowledge that we advised on before is now common developer knowledge. I am planning to take care of the project-maintained eclasses personally, and move the relevant documentation to the general wiki space.

At the same time, I would like to take this opportunity to tell the history of our little multilib project.

Continue reading “Retiring the multilib project”

From build-dir to venv — testing Python packages in Gentoo

A lot of Python packages assume that their tests will be run after installing the package. This is quite a reasonable assumption if you take that the tests are primarily run in dedicated testing environments such as CI deployments or test runners such as tox. However, this does not necessarily fit the Gentoo packaging model where packages are installed system-wide, and the tests are run between compile and install phases.

In great many cases, things work out of the box (because the modules are found relatively to the current directory), or require only minimal PYTHONPATH adjustments. In others, we found it necessary to put a varying amount of effort to create a local installation of the package that is suitable for testing.

In this post, I would like to shortly explore the various solutions to the problem we’ve used over the years, from simple uses of build directory to the newest ideas based on virtual environments.
Continue reading “From build-dir to venv — testing Python packages in Gentoo”

10 Years’ Perspective on Python in Gentoo

I’m a Gentoo developer for over 10 years already. I’ve been doing a lot of different things throughout that period. However, Python was pretty much always somewhere within my area of interest. I don’t really recall how it all started. Maybe it had something to do with Portage being written in Python. Maybe it was the natural next step after programming in Perl.

I feel like the upcoming switch to Python 3.9 is the last step in the prolonged effort of catching up with Python. Over the last years, we’ve been working real hard to move Python support forward, to bump neglected packages, to enable testing where tests are available, to test packages on new targets and unmask new targets as soon as possible. We have improved the processes a lot. Back when we were switching to Python 3.4, it took almost a year from the first false start attempt to the actual change. We started using Python 3.5 by default after upstream dropped bugfix support for it. In a month from now, we are going to start using Python 3.9 even before 3.10 final is released.

I think this is a great opportunity to look back and see what changed in the Gentoo Python ecosystem, in the last 10 years.
Continue reading “10 Years’ Perspective on Python in Gentoo”

Moving commits between independent git histories

PyPy is an alternative Python implementation. While it does replace a large part of the interpreter, a large part of the standard library is shared with CPython. As a result, PyPy is frequently affected by the same vulnerabilities as CPython, and we have to backport security fixes to it.

Backporting security fixes inside CPython is relatively easy. All main Python branches are in a single repository, so it’s just a matter of cherry-picking the commits. Normally, you can easily move patches between two related git repositories using git-style patches but this isn’t going to work for two repositories with unrelated histories.

Does this mean manually patching PyPy and rewriting commit messages by hand? Luckily, there’s a relatively simple git am trick that can help you avoid that.
Continue reading “Moving commits between independent git histories”

Why not rely on app developer to handle security?

One of the comments to the The modern packager’s security nightmare post posed a very important question: why is it bad to depend on the app developer to address security issues? In fact, I believe it is important enough to justify a whole post discussing the problem. To clarify, the wider context is bundling dependencies, i.e. relying on the application developer to ensure that all the dependencies included with the application to be free of vulnerabilities.

In my opinion, the root of security in open source software is widely understood auditing. Since the code is public, everyone can read it, analyze it, test it. However, with a typical system install including thousands of packages from hundreds of different upstreams, it is really impossible even for large companies (not to mention individuals) to be able to audit all that code. Instead, we assume that with large enough number of eyes looking at the code, all vulnerabilities will eventually be found and published.

On top of auditing we add trust. Today, CVE authorities are at the root of our vulnerability trust. We trust them to reliably publish reports of vulnerabilities found in various packages. However, once again we can’t expect users to manually make sure that the huge number of the packages they are running are free of vulnerabilities. Instead, the trust is hierarchically moved down to software authors and distributions.

Both software authors and distribution packagers share a common goal — ensuring that their end users are running working, secure software. Why do I believe then that the user’s trust is better placed in distribution packagers than in software authors? I am going to explain this in three points.
Continue reading “Why not rely on app developer to handle security?”